If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+40
We move all terms to the left:
-(-16Y^2+40)=0
We get rid of parentheses
16Y^2-40=0
a = 16; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·16·(-40)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*16}=\frac{0-16\sqrt{10}}{32} =-\frac{16\sqrt{10}}{32} =-\frac{\sqrt{10}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*16}=\frac{0+16\sqrt{10}}{32} =\frac{16\sqrt{10}}{32} =\frac{\sqrt{10}}{2} $
| (4x+3)(x-5)=4x^2-15 | | x*(x+16)=225 | | h-26=-2 | | 9=3s-3 | | x/4−9=−2 | | n+3=5n-12 | | 12.5x+4=7x*37 | | 280=6x5x | | y=-11+3(12) | | -4(10+7x)=-264 | | 1-6x-7x=27 | | 0.3x+1.2=4.5 | | 5(9+3x)=195 | | 2(y-5)-6y=26 | | 14x^2+12x-6=-6 | | −8−0,2e=−18 | | -2n=-1.46 | | 9x+3=12+4x | | -7+10x=44 | | 8x-20=8x+8=180 | | m^2-15m+48=-8 | | 2(5x+8)=-24 | | 7/12+3x=57 | | -4+(-3)=x+3 | | 17+x=1-3x | | -7+x+4x=-2 | | -4(w+1)=-8w-44 | | 29+48+x=180 | | 19=-9-5n-2n | | y=-20-8 | | 12n-12=62 | | 18-3x=2x-32 |